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Abstract

We present the second part of the work [J. Phys. Chem. 100 (1996) 8815] devoted to electron transfer (ET) reactions in model triad
systems. A model supramolecule is the ionic triad D+–A1−–A2 immersed in acetonitrile solvent at room temperature. The ET rate
constants for both the charge separation (the forward ET) and the charge recombination (the backward ET) are expressed in terms of the
two-dimensional (2D) statistical distribution of the respective solvent polarization coordinates. This distribution for the triad with various
angular arrangements of the subunits has been evaluated by the MD computer simulation for the molecular model of the solvent. The
dependence of the yield of the charge-separated state D+–A1–A2− on the triad geometry and the free energy changes of the forward and
the backward ETs as well as the conditions that maximize the yield of the forward ET have been considered.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electron transfer (ET) in supramolecular systems is a sub-
ject of intensive experimental[1–28]and theoretical[29–54]
research, which have an important practical implication. It
has been proven possible to prepare synthetic molecular de-
vices that can be used for capturing and storing solar energy.
Their efficiency is, however, still beneath the level of the
most famous natural electronic devices such as the reaction
centers (RCs) of photosynthetic organisms.

Theoretical approach to ETs in multicenter systems im-
mersed in protein or polar solvents requires definition of an
appropriate number of intramolecular and solvent-dependent
reaction coordinates. The former coordinates are connected
with the internal reorganization of a supramolecule during
particular charge transfer processes, whereas the latter de-
scribe the effect of fluctuation of the surrounding medium.
For rigid supramolecular systems in solvents of high po-
larity the set of reaction coordinates can be limited to the
solvent polarization coordinates. It has been shown that the
competitive or sequential ETs in a rigid triad system can
be modeled using two polarization coordinates and, conse-
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quently, the two-dimensional (2D) free energy surfaces of
the reactant and the product states[29–32].

Pairs of orthogonal reaction coordinates were introduced
by Marchi et al.[34] and Parson et al.[35] in their computer
simulations of the competitive charge separation reactions
in the bacterial photosynthetic RC. Results of the former
group supported the direct ET (superexchange) from unit 1
of the triad (special pair composed of a bacteriochlorophyll
dimer) to unit 3 (bacteriopheophytin). Results of the latter
group predicted the possibility of the sequential ETs: from
1 to 2 (bacteriochlorophyll) and then from 2 to 3. Warshel
et al. [37] suggested that divergence of the simulation re-
sults arose from incomplete treatment of dielectric effects
in the Marchi’s calculations. All these groups of workers
used, however, one-dimensional (1D) free energy curves, in-
stead of 2D free energy surfaces, to analyze their simulation
data. Fushiki and Tachiya[38] have constructed the correct
2D free energy functions for the two primary ETs in the
bacterial RC from the results of the aforementioned simula-
tions. Their conclusions supported the two-step mechanism
of charge separation in the RC. The authors underlined that
if the rate of fluctuation of solvent surrounding the triad is
slow compared with rates of the two competitive ETs, then
these ETs interfere with each other and this makes it impos-
sible to describe them separately based on 1D free energy
curves. Contrary, in the nonadiabatic limit the equilibrium
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distribution in the free energy surface of the initial state of
the triad is maintained during ETs and both reactions occur
independently[29–32,38]. Thus, each of them can be ana-
lyzed using a pair of appropriate 1D free energy curves: one
curve for the initial state and one for the final state. The ini-
tial state curvesGis(q1) andGis(q2) for the two competitive
ETs are, however, different even in the nonadiabatic limit.

Recently, Zusman and Beratan[39] developed the
theory of ET in three-center systems immersed in a
dielectric-continuum solvent. They described ET as arising
from 2D diffusion over two statistically independent reac-
tion coordinates, which were defined similarly as in[34].
Their theory describes competition between sequential and
superexchange ET mechanisms, and includes the solvent
dynamics control of the overall reaction rate. The dynam-
ical solvent effect in the dielectric-continuum limit was
also considered in a theory developed by Okada et al.[40],
which concerns ETs among many electronic states coupled
to multidimensional diffusive nuclear modes. The theory
has been applied to description of thenonequilibrium se-
quential ETs in a supramolecular triad system composed
of donor–medium–acceptor (DMA) molecules. In other
words, they considered ET from D∗MA to D+M−A, fol-
lowed by another ET from D+M−A to D+MA− without
thermal equilibration of the state D+M−A. They found a
nonmonotonic dependence of the overall donor-to-acceptor
ET rate constantk on the solvation time scaleτs. The func-
tion k(τs) appeared to increase in the region of smallτs and
decrease in the slow solvation limit. Najbar and co-workers
[41] applied the theory of the nonadiabatic ET reactions
based on the stochastic Liouville equation to model DAA
triad systems in a continuum dielectric solvent. Fushiki and
Tachiya[30] expressed the two-step ETs in a model linear
triad DAA surrounded by polar, structureless solvent in
terms of the dynamics of a Brownian particle on the 2D free
energy surfaceFI (q1, q2) of the intermediate state D+A−A.

In the majority of papers concerning ETs in three-center
systems, a polar solvent was treated as adielectric continuum
characterized by specific values of the static and optical
dielectric constants. Our previous paper[32] introduced a
molecular modelof solvent (acetonitrile) and showed how
it affects description of the competitive ET reactions in a
model rigid supramolecule with various spatial arrangements
of the subunits. One of the triad considered there was the
D–A1–A2 system that produces after photoexcitation the
ionic states D+–A1−–A2 or D+–A1–A2−.

The present work is a logical continuation and com-
pletion of those studies. It is devoted to ETs which occur
in the model,ionic triads D+–A1−–A2 immersed in ace-
tonitrile solvent at room temperature. One of these ETs
is the backward reaction, which leads to reformation of
the neutral system D–A1–A2, the other is the forward ET
resulting in the charge-separated state D+–A1–A2−. The
reaction coordinates for these two processes are defined
as q1 = e(V2 − V1) and q2 = e(V2 − V3), whereV1, V2
andV3 stand for the electrostatic potential at D+, A1− and

A2, respectively. We apply the MD computer simulation
method to calculate the statistical distributionϕ(q1, q2) and,
consequently, the free energy surface of the D+–A1−–A2
state. We consider the nonadiabatic limit (fast solvation) at
which both reactions can run parallel on this energy surface.
The reaction coordinates are random variables. We describe
static and dynamical stochastic properties of the reaction
coordinates and discuss the influence of the solvent, the
triad geometry, and the free energy changes on the two
processes on the basis of these properties. We also consider
the competition between the forward and the backward ET
reactions and the conditions that maximize the yield of the
former process. Our triad is not supposed to mimic any spe-
cific experimental system. Our intention is to show the role
of the solvent, for which we employ a realisticmolecular
model [55] that has been proven to reproduce some struc-
tural and dielectric properties of the bulk phase[56,57]. We
compare some results for the ionic system with those for the
neutral triad and discuss some conclusions drawn from the
present model in relation to the available experimental data.

The remainder of the paper is organized as follows: In
Section 2we describe details of the performed computer
simulations. InSection 3.1we present the 2D and marginal
(1D) probability distribution functions and their dependence
on the angular arrangement of the triad subunits. The dy-
namical properties of the reaction coordinates are discussed
based on the time auto- and cross-correlation functions in
Section 3.2. We compare here the dynamics of solvation of
the particular subunits of the triad with that of the separately
solvated molecules or ions. InSection 3.3we present the
rate constants for the forward and backward ETs and discuss
the efficiency of the former process. Finally, inSection 3.4,
we describe the solvent structure and the charge distribution
around the ionic triads and compare them with respective
data for the neutral triad systems.

2. Outline of calculation

Chromophores of the D+–A1−–A2 system were modeled
by two simple ions (labeled 1 and 2) and one atom (labeled
3), and surrounded by 497 acetonitrile molecules. The triad
was immobile during simulation runs and a constant value of
r = 5.5 Å was assumed as the distance between the central
and each of the side subunits. We considered several different
angular arrangements of the triad, which were characterized
by the angleβ between axes connecting A1− with D+ and
A2, respectively. The values ofβ assumed for particular runs
were 60, 90, 120, and 180◦.

CH3CN–CH3CN interactions were described by the
six-site potential developed by Böhm et al.[55]. In this
potential the sites are located on the respective atoms of
an acetonitrile molecule and each site of one molecule
interacts with every site on another molecule through the
standard 6–12 Lennard–Jones and the Coulomb potentials.
The acetonitrile molecule is treated as a rigid object, with
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bond lengths which are deduced from diffraction data on the
liquid and equal to:rC1–H = 1.087 Å, rC1–C2 = 1.460 Å,
rC2–N = 1.170 Å, rH–H = 1.771 Å and the bond angle
∠(H–C1–C2) = 109.8◦. In the above notation C1 and
C2 stand for the carbon atoms in the methyl and cyanide
groups, respectively. This model potential is widely used
in MD simulations and gives a good description of the
structural, dynamical and dielectric properties of both the
bulk liquid [56,57] and the acetonitrile clusters[58]. The
interactions of the triad subunits with the sites on a solvent
molecule were described by the 6–12 Lennard–Jones plus
Coulomb potentials. A value ofε = 18kB was taken as
the Lennard–Jones well depth ands = 4.9 Å as the colli-
sion diameter for each of the solutes. The solute–solvent
interactions as well as interactions between unlike atoms
in different acetonitrile molecules were approximated using
the Lorentz–Berthelot mixing rules[59].

The MD program used for the calculations is based on the
MDMPOL coded by Smith and Fincham[60], and calcu-
lates the time evolution of the system in the NVE ensemble
using a leapfrog algorithm for the center-of-mass motions
and a leapfrog-quaternion algorithm for the angular motions
of the solvent molecules[59]. Our system of 500 particles
was confined to the cubic box of side length of 35.1214 Å,
and we employed the usual periodic boundary conditions as
well as the Ewald summation of the electrostatic interac-
tions. The average temperatures in all equilibrium runs were
291±4.9 K. Equations of motion of solvent molecules were
integrated with the time step of 2 fs, which ensured that the
total energy of the system was conserved within less than
0.09% over the course of a 60 ps equilibrium trajectory. Sim-
ulation runs of about 700 ps, performed for each angular ar-
rangement of the triad, were divided into 12 separate runs
between which we annealed the system, i.e., the system was
first warmed up to a temperature of about 600 K and then
gradually cooled back to 291 K. This procedure allowed us
to avoid trapping of the solvent molecules into some artifi-
cial configurations in the vicinity of the solute atoms.

The electrostatic potential energieseV1, eV2 andeV3, pro-
duced by solvent molecules at the centers of D+, A1− and
A2, respectively, were calculated after every three time steps
of the equilibrium trajectory of the system and were recorded
sequentially during the production period of the simulation.
Long-range electrostatic interactions were included into the
potential experienced by each subunit of the triad by apply-
ing an anisotropic approximation to the Ewald summation
[61]. In this approximation the Ewald potential for a pair of
point charges is given by the formula

E(r) = 1

r
+ a1r

2 + a2r
4 + a3r

6 + a4r
8 + a5T4 + a6T6

+a7T8 + a8T4r
2 + a9T6r

2 + a10T4r
4 (1)

whereTn = xn +yn +zn, andr = (x2 +y2 +z2)1/2 denotes
the distance between the test charge at each subunit of the
triad and a partial charge on a particular atom of an acetoni-

trile molecule. Distances inEq. (1)are expressed in units of
side length of the simulation box and the constantsa1 to a10
have the following values: 2.094395,−4.506792, 6.651269,
−10.86613, 7.511320, 17.07159, 60.53989,−23.27944,
−113.0078, and 65.19680, respectively. Summation of the
terms in Eq. (1), performed for all the partial charges of
all the acetonitrile molecules in the simulation box, gives
the electrical potential at each subunit of the triad. For-
mula (1) is relatively simple and allows us to obtain more
precise values for the interaction energy than the spherical
approximations to the Ewald sum.

The potential energy differencese�V21 = e(V2−V1) be-
tween the A1− and D+ subunits ande�V23 = e(V2 − V3)

between the A1− and A2 subunits are the random variables,
which we denote asq1 andq2, respectively. These random
variables are the appropriate reaction coordinates for de-
scription of the competitive backward and forward ET reac-
tions in the ionic triad system[29,30,62].

The joint probability distribution functionϕ(q1, q2) of the
variablesq1 and q2 and the marginal probability distribu-
tionsϕi(qi) of particularqi’s for all considered angular ar-
rangements of the triad were constructed as histograms of
the data collected during the equilibrium (production) period
of the simulations. The performed simulation runs allowed
us to obtain relatively smooth 1D and 2D probability distri-
bution functions. They were also sufficient for calculation
of the time auto-correlation and cross-correlation functions
(seeSection 3.2), which characterize the classical dynamics
of the considered random variables. The calculations were
performed on the IBM RISC System/6000 Power Cluster
which executes 134 Mflops in a one-processor computation.

3. Results and discussion

3.1. Static stochastic properties of the reaction
coordinates

For the D+–A1−–A2 state, that we refer to as redox
State I, the back ET can lead to the ground state D–A1–A2
(State 0) and the forward ET to the charge-separated state
D+–A1–A2− (State II). The differences between energies
of the States I and 0 or I and II correspond, respectively, to
the energy gaps for the backward or forward transfers. As-
suming that the electron interacts with its environment only
electrostatically, each of these energy gaps can be expressed
by the difference in the electrostatic energy of the transferred
electron before and after transfer, i.e., byq1 = e�V21 =
e(V2 −V1) for the backward andq2 = e�V23 = e(V2 −V3)

for the forward ETs. The electrostatic potentialsV2, V1 and
V3 are generated by the solvent at the positions of the actual
electron donor A1− (unit 2) and the acceptor D+ (unit 1)
and A2 (atom 3), respectively.

We applyq1 and q2 as the reaction coordinates for the
competitive ET processes in our ionic triad and connect
the rates of these ETs with the joint probability distribution
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functionϕ(q1, q2) constructed for the solvated D+–A1−–A2
system. Within the framework of the linear response approx-
imationϕ(q1, q2) is a 2D Gaussian

ϕ(q1, q2) = 1

2πσ1σ2

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

[(
q1 − m1

σ1

)2

− 2ρ
q1 − m1

σ1

q2 − m2

σ2
+

(
q2 − m2

σ2

)2
]}

(2)

wherem1 = 〈e�V21〉I andm2 = 〈e�V23〉I are the ensemble
averages

σ2
1 = 〈δq2

1〉I = 〈(e�V21 − m1)
2〉I ,

σ2
2 = 〈δq2

2〉I = 〈(e�V23 − m2)
2〉I (3)

are the fluctuations or variances of the respective potential
energy differences calculated for the redox State I, and

ρ = 〈δq1δq2〉I

σ1σ2
(4)

is the correlation coefficient expressed by the covariance
σ2

12 = 〈δq1δq2〉I of the random variablesq1 andq2.
Linear response theory predicts also that the probability

distribution functionϕi(qi) of each reaction coordinateqi
(i = 1, 2) is a 1D Gaussian. Parametersmi, σi2, andρ of
the 1D and 2D Gaussians depend on the angular arrange-
ment of the triad subunits and we calculate them directly
from the results of MD simulations. The obtained values of
mi andσi2 together with their statistical errors are listed in
Table 1. To estimate the errors we use a standard procedure
described in[59]. The error of a meanmi is expressed by
σi divided by the square root of the number ofuncorrelated
solvent structures, i.e., asσi

√
fsi/nrun, wherenrun stands

for a total number of structures collected during the simula-
tion andfsi is a statistical inefficiency factor estimated from
a respective time auto-correlation function (cf.Fig. 5). This
factor was dependent on the triad geometry and its values
for all considered means were within an interval from 50 to

Table 1
Parameters of Gaussian distributions of the reaction coordinatesq1 = e�V21 andq2 = e�V23, and the potentialseVi, which are generated by the solvent
on particular triad subunitsa

β = 60◦ β = 90◦ β = 120◦ β = 180◦

Backward ET,q1

m1 4.792± 0.009 4.841± 0.009 4.849± 0.008 4.881± 0.009
σ2

1 0.128± 0.003 0.128± 0.003 0.129± 0.003 0.136± 0.003

Forward ET,q2

m2 2.052± 0.008 1.308± 0.007 1.021± 0.007 0.854± 0.008
σ2

2 0.116± 0.003 0.111± 0.002 0.110± 0.002 0.120± 0.003

D+ subunit
〈eV1〉 −2.556± 0.008 −2.615± 0.008 −2.616± 0.007 −2.630± 0.007
〈δ(eV1)

2〉 0.122± 0.002 0.117± 0.002 0.119± 0.002 0.120± 0.002

A1− subunit
〈eV2〉 2.236± 0.007 2.226± 0.007 2.233± 0.007 2.250± 0.007
〈δ(eV2)

2〉 0.090± 0.002 0.090± 0.002 0.088± 0.002 0.094± 0.002

A2 subunit
〈eV3〉 0.184± 0.007 0.918± 0.007 1.212± 0.007 1.396± 0.007
〈δ(eV3)

2〉 0.105± 0.002 0.103± 0.002 0.106± 0.002 0.103± 0.002

a The mean values are in eV and variances in eV2.

80 (fsi’s obtained form1 were higher than those form2). The
errors in variances are determined by employing Eq. (6.23)

of [59]. Figs. 1 and 2present the distributionsϕi(qi) for the
reaction coordinatesqi associated with the backward and
forward ETs, respectively. Dotted lines in the figures show
ϕi(qi) calculated as histograms from the respective MD data,
whereas full lines are the Gaussian approximations to these
histograms. The latter are calculated by the nonlinear re-
gression method based on the Levenberg–Marquardt mini-
mization algorithm. For all fittings performed the chi-square
values do not exceed 2.8 × 10−4 eV−2 and the standard er-
rors obtained for Gaussian parametersm andσ are of the
order of 0.001 eV. The optimized values ofmi andσ2

i agree,
within the estimated errors, with the corresponding MD val-
ues given inTable 1.

The spatial arrangement of the D+–A1−–A2 system has
rather small influence onϕ1(q1). The position ofϕ2(q2) de-
pends, however, considerably on the triadshape. To explain
these relations we compare the parameters of the Gaus-
sian distributions for the reaction coordinatesq1 = e�V21
andq2 = e�V23 with those for the electrical potentialeVi
(i = 1,2,3) produced by the solvent separately on each
component of the triad. The respective data are included
in Table 1. The average potential at the center of D+ and
A1− does not depend considerably on the triad geometry.
On the contrary, the value of〈eV3〉 depends strongly on
the triad shape and this dependence results mainly in the
aforementioned shift of the distribution function of the re-
action coordinateq2. The positive electrostatic potential at
the center of the uncharged moiety A2 shows an asymmetry
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Fig. 1. Distributions of the reaction coordinateq1 = e�V21 connected with the back ET for the regular triangle (β = 60◦) and linear (β = 180◦) system
D+–A1−–A2 in acetonitrile atT = 291 K. β is the angle between directions of the D+–A1− and A1−–A2 bonds. Results of the MD simulation (dashed
line) are fitted by the Gaussian function (full line).

in solvation of the triad system. This asymmetry is also seen
in the solvation energies of the charged species. Multiplying
the average potential at a given subunit by a charge located
on the subunit, we obtain the electrostatic solvent–solute
interaction energyEel. Yu and Karplus[63] showed that
this quantity can approximate quite reasonably the electro-
static free energy of solvationFel via the relationFel ∼=
0.5Eel. The energyFel calculated for the cation subunit
of the triad appears to be more negative than that for the

Fig. 2. Distributions of the reaction coordinateq2 = e�V23 connected with the forward ET for different arrangements of the D+–A1−–A2 triad. Results
of the MD simulations (dashed lines) are fitted by the Gaussian functions (full lines). Acetonitrile solution,T = 291 K.

A1−. A similar result was found for free, simple ions sol-
vated in acetonitrile[64] and also for the molecular ions
N,N-dimethylaniline+ and anthracene− in the same solvent
[65].

The width of the electrostatic potential difference distri-
butionϕi(qi) is related to the solvent reorganization energy
λi, via

σ2
i (β) = 2kBTλi(β) (5)
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Fig. 3. Correlation coefficientρ between reaction coordinatesq1 andq2 as a function of the angleβ calculated for the D+–A1−–A2 triad (black circles
with error bars) and for the corresponding neutral system D–A1–A2 (open circles with error bars).

The reorganization energies associated with the backward
and forward ETs are, on the average, 2.60±0.06 and 2.28±
0.05 eV, respectively, and their dependence on the spatial
arrangement of the triad is rather weak.

Fig. 3 presents the coefficient of correlationρ between
reaction coordinatesq1 andq2 as a function ofβ. The val-
ues ofρ(β) for the ionic triad are shown as black circles,
whereas open circles show the correlation coefficients ob-
tained for the corresponding neutral system D–A1–A2[32].
Errors in the MD values ofρ(β), which are presented in
the figure, were calculated for ionic and neutral triads as
[1 − ρ2(β)]/

√
fsi/nrun. The correlation between reaction

coordinates for the ionic triad is considerably weaker com-
pared with that for the neutral triad. In the latter system
motions of solvent molecules are constrained mostly by the
hindered rotation effects. In the former system, however, we
have additionally strong electrostatic interactions between
the ionic components of the triad and the partial charges
distributed on the acetonitrile molecules. Clearly, these in-
teractions reduce correlation between quantities that depend
on fluctuations in molecular arrangement in the vicinity of
the triad.

3.2. Dynamical stochastic properties of the reaction
coordinates

To characterize the dynamical behavior of the solvent and
its relation to that of the reaction coordinates, we employ two
kinds of equilibrium time auto-correlation functions (tacfs)
defined by the relations

CVi(t) = 〈δVi(0)δVi(t)〉I

σ2
Vi

, i = 1,2,3 (6)

with i running over the triad subunits D+, A1−, and A2,
respectively, and

Ci(t) = 〈δqi(0)δqi(t)〉I

σ2
i

, i = 1,2 (7)

for the reaction coordinatesq1 andq2. δVi(t) stands for the
instantaneous fluctuation of the electrical potentialVi(t) at
the center ofith moiety of the triad from its equilibrium
average value andδqi(t) is the fluctuation of the coordinate
qi(t). The error of a time correlation functionC(t) is generally
expressed as(2t′cor/trun)

1/2[1−C(t)], wheret′cor is a modified
correlation time obtained by integration ofC2(t) and trun
is the production period of the simulation[59]. Thus, the
error of C(t) is 0 at t = 0, but it tends to(2t′cor/trun)

1/2 at
long time. With t′cor estimated for our model systems and
the production periods of about 700 ps, the long-time errors
for all considered correlation functions are lower than 0.02.

Fig. 4presents the functionsCVi(t) calculated for various
configurations of the D+–A1−–A2 system on the basis of
MD simulations. In the framework of the linear response
formalism these functions are equivalent to the response
functions, which describe the solvation energy relaxation
following the solute charge jump[64]. The common feature
of all functions plotted inFig. 4is that nearly 60% of the total
change in solvation energy is achieved within the first 100 fs.
The next 100 fs is sufficient for more than 90% relaxation of
the solvation energy. The average relaxation time〈τ〉, which
can be estimated by integration of tacf, depends on the choice
of the triad subunit as well as on the spatial arrangement
of the triad. It is the longest for A1− unit (0.18 ps for the
regular triangle to 0.21 ps for the linear triad) and changes
from 0.15 to 0.18 ps in the case of D+. It is worth noting
that the above values of〈τ〉 agree quite reasonably with
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Fig. 4. Time auto-correlation functions of fluctuation in the electrical
potential (Eq. (9)) produced by the acetonitrile molecules at the centers of
each component of the triad calculated for different values of the angleβ.

the longitudinal relaxation timeτL which was estimated for
liquid acetonitrile at 298 K as 0.2 ps[66]. The shortest〈τ〉
of the order of 0.12–0.14 ps is obtained for the atom A2 of
the triad.

The above-mentioned values of〈τ〉 allow us to assume that
the average solvation energy relaxation time for the whole
triad of any shape should not exceed〈τ〉max = 0.21 ps. In
the present paper we describe the nonadiabatic ETs in the
ionic triad using the equilibrium distribution in the free en-
ergy surfaces of the solvated D+–A1−–A2 systems. Such
an approach is justified if the decay rate of the ionic triad,
namely, the sum of rate constants for the backward (k1) and
forward (k2) ETs is much smaller than 1/〈τ〉max ≈ 4.8 ps−1.
The ETs considered in the present work meet this condition.
The time of the order of〈τ〉max is necessary also to complete
the solvation of the D+–A1−–A2 triad, which arises from
the respective neutral system by ET between the excited D
and A1. Thus, for the rate constantsk1 andk2 considerably
slower than 4.8 ps−1 we can neglect, in the first approxima-
tion, the effect of thermal equilibration of the ionic triad on
the backward and forward ETs.

The decay of a fast component of the solvation response
in the vicinity of a particular triad subunit can be estimated

by fitting the early part of each tacf by the Gaussian function
exp[−t2/(2τ2

sh)] with a characteristic short-range correlation
time τsh. The fittings performed over the time interval from
0 to 54 fs giveτsh = 83–86 fs for the neutral subunit A2
and about 78 fs for the D+ and A1−. The fast part of the
solvation response is governed by small amplitude inertial
motions (mostly rotations) of solvent molecules in the close
vicinity of the solute[64]. These motions should be slightly
faster around the ionic components of the triad than around
the neutral subunit and this is indeed reflected in the values
of τsh. It seems that the aforementioned ordering of the
average relaxation times〈τ〉, which is opposite for the ionic
and neutral triad components to that ofτsh, results from the
slow, diffusive part of the solvation response. Most important
contribution to this response comes from the reorganization
of the first solvation shell of the triad. The shell is looser
and less ordered around the A2 than around the D+ and
A1− (cf. Section 3.4) and this difference is the reason why
the overall relaxation process is faster in the vicinity of the
neutral moiety A2. Different behaviors ofτsh and 〈τ〉 for
ionic and neutral subunits of the triad are reflected in the
behaviors ofτsh and〈τ〉 for the reaction coordinatesq1 and
q2 as shown below.

Fig. 5presents the equilibrium time correlation functions
(7) of fluctuations in the reaction coordinates associated with
the backward and forward ETs and calculated for various
spatial arrangements of the D+–A1−–A2 system on the basis
of MD simulations. The oscillations inC1(t) are more clear
and the overall relaxation process described by this func-
tion for all triad arrangements is slightly slower in compar-
ison with C2(t). The average relaxation times〈τ〉 obtained
by integration of (7) are 0.19–0.24 ps for the backward co-
ordinateq1, and 0.15–0.19 ps for the forward coordinateq2.
On the other hand, from the short-time Gaussian fittings to
the tacfs for reaction coordinates we obtainτsh within the
interval from 80 to 85 fs, but at eachβ the value forq1 is
slightly smaller than that forq2. It is interesting to note that
τsh for the two competitive ETs in the D+–A1−–A2 are
shorter thanτsh for the reaction coordinate associated with
the ET between the excited donor D∗ and the acceptor A1
in the neutral triads of various shape. The latter time was
estimated in[32] as 92–98 fs.

To complete the study on the dynamical properties of the
reaction coordinates, we construct the time cross-correlation
functions (tccfs) of the form

Ccross
V2−Vi

(t) = 〈δV2(0)δVi(t)〉I

ρ2iσV2σVi

(8)

and

Ccross(t) = 〈δq2(0)δq1(t)〉I

ρσ1σ2
(9)

which describe the decay of the correlation between a par-
ticular pair of random quantities. InEq. (8)Vi corresponds
to the electrical potential at D+ or A2, andρ21 andρ23 are
the ensemble-averaged values of the correlation coefficients
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Fig. 5. Time auto-correlation functions (Eq. (10)) of fluctuations in the potential energy difference between A1− and D+ (upper part) and between A1−
and A2 (lower part) calculated for various triad shapes.

for the electrical potentials at the centers of A1− and D+ or
A1− and A2, respectively. For each spatial arrangement of
the triad�21 is slightly lower (by about 0.02) thanρ23 and
is decreasing from 0.40 for the regular triangle to 0.37 for
the linear system.

Fig. 6 shows tccfs (8) obtained for various shapes of the
triad. In all cases considered the correlation betweenV1 and
V2 (full curves) decays faster than that betweenV2 andV3
(broken curves). It is especially pronounced for thebenttri-
ads withβ = 90◦ and 120◦ and reflected in the early decay
time constantτsh, which equals about 70 fs forCcross

V1−V2
(t)

and about 80 fs in the case ofCcross
V2−V3

(t). Different short-time
behaviors of the two tccfs can be explained by the aforemen-
tioned ordering role of the electrostatic interactions between
D+ or A1− and the acetonitrile molecules in the close vicin-
ity of the ionic part of the triad (cf. explanation toFig. 4).
The functionsCcross

V1−V2
(t) for β > 60◦ decay considerably

faster than the corresponding functionsCcross
V2−V3

(t) also in the
longer time scale.

It is worthwhile to note that tacfs (7) for the backward
and forward ETs are related to tacfs (6) and tccfs (8) via
theoretical relations of the form

C1(t) = 1

σ2
1

(σ2
V1
CV1(t) + σ2

V2
CV2(t)

−2ρ21σ
2
V1
σ2
V2
Ccross
V2−V1

(t)) (10)

C2(t) = 1

σ2
2

(σ2
V2
CV2(t) + σ2

V3
CV3(t)

−2ρ23σ
2
V2
σ2
V3
Ccross
V2−V3

(t)) (11)

These relations are fulfilled by the time correlation functions,
correlation coefficients and variances obtained from our MD
simulations for all triad shapes considered.

Fig. 7 presents the tccfs (9) of the reaction coordinates
q1 andq2, calculated for various spatial arrangements of the
triad subunits. The time constantτsh for the decay of the
fast Gaussian component ofCcross(t) increases from about
75 fs for thebent triads to 91 fs for the regular triangle and
105 fs for the linear D+–A1−–A2 system.

3.3. ET rates

By using the results inFigs. 1–3, we can construct the 2D
Gaussian distribution (2) of the reaction coordinatesq1 and
q2. The free energy functionF(q1, q2) for the D+–A1−–A2
triad (redox State I) can be defined as

F(q1, q2) = −kBT ln ϕ(q1, q2) (12)

and, like the distributionϕ (Eq. (2)), it depends on the spa-
tial arrangements of the triad subunits.Fig. 8 presents the
contour maps ofF(q1, q2) which were obtained for the con-
sidered values ofβ.

The ETs between the redox States I→ 0 and I→ II occur
along the intersectionsΓ of the relevant free energy surfaces
in the 2D reaction coordinate space. With our choice ofq1
andq2, ΓI→0 andΓI→II are the straight lines parallel to one
of the coordinate axes[29]. In other words, the intersection
line ΓI→0 for the backward ET is expressed by

q1 = q#
1, q2 ∈ (−∞,∞) (13)
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Fig. 6. Time cross-correlation functions (Eq. (11)) for the electrical po-
tentials produced by the acetonitrile molecules on the D+ and A1− (full
line) and on the A1− and A2 (broken line) calculated for various values
of the angleβ.

Fig. 7. Time cross-correlation functions (Eq. (12)) of fluctuations in the reaction coordinatesq1 and q2 calculated for various triad shapes.

whereas relations

q1 ∈ (−∞,∞), q2 = q#
2 (14)

describeΓI→II associated with the forward ET. These inter-
section lines are shown schematically inFig. 8. The values
of q#

1 andq#
2 depend on the triad configuration and for each

value ofβ are given by[29]

q#
1(β) = λ1(β) − �G1 (15)

q#
2(β) = −λ2(β) + 2λ12(β) − �G2 (16)

where�G1 and�G2 are the free energy changes,λ1 and
λ2 are the reorganization energies (Eq. (5)) andλ12(β) =
σ2

12(β)/2kBT .
The reaction rate constantk for a given transition is pro-

portional to the probability of finding the system along the
respective intersection lineΓ

k ∝
∫∫

Γ

ϕ(q1, q2)dq1 dq2 (17)

Since the joint probability density functionϕ(q1, q2) is a
2D Gaussian, the integral inEq. (17), with Γ defined by
Eqs. (13) and (14), reduces to the valueϕi(q

#
i ) atqi = q#

i of
the 1D normal distribution of the reaction coordinateqi. In
our approach the two ETs, atq1 = q#

1 andq2 = q#
2, do not

interfere with each other because their rates are slower than
the rate of the fluctuation of acetonitrile in the vicinity of
the ionic triad. Thus, we could assume that the equilibrium
free energy surfaceF(q1, q2) is maintained and characterize
each of the two ETs independently, using the respective 1D
free energy curves[29–32].

The rate constants of charge recombination,kI→0 ≡ k1,
and charge shift,kI→II ≡ k2, in the triad system with a given
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Fig. 8. Contour maps of the potential energy function for the D+–A1−–A2 supramolecule with various arrangementsβ of the subunits. The backward
ET occurs along the lineq1 = q#

1, and the forward ET alongq2 = q#
2. The labels stand for the values of energy in units of eV, and the difference

between successive contours is 0.1 eV.

spatial arrangement of the subunits are given by

k1(β) = 2π
J2

1ϕ1[q#
1(β)] (18)

and

k2(β) = 2π
J2

2ϕ2[q#
2(β)] (19)

respectively. InEqs. (18) and (19)Ji for i = 1, 2 stands for
the transfer integral

Ji = J0 exp[−1
2α(R − 2ra)] (20)

with R = 5.5 Å, ra = 2.75 Å and we take the constant pa-
rameters asα = 1.0 Å−1 and J0 = 100 cm−1. The same
values of R, ra, α, and J0 were employed in our previ-
ous calculations of the charge separation rate constants in

the neutral D–A1–A2 system[32]. As it was mentioned in
Section 1, our main purpose is to describe the influence of
solventmolecularityon ET processes in simple triad sys-
tems. From this point of view it seems reasonable to keep the
same values of the parameters, which are connected mostly
with the solute properties in order to minimize the number
of variables introduced into the model.

In the present MD calculationsq#
1 and the reorganization

energyλ1 depend slightly on the triad shape and, conse-
quently, the rate constantk1 changes withβ. The variation
of k1 is, however, not very large. The value ofq#

2 for the
forward ET depends strongly onβ (mostly viaλ12(β)), but
this dependence is canceled to a large extent by theβ-shift
of the maximum ofϕ2[q2(β)] distribution (cf.Fig. 2). The
functionsk1(β) and k2(β) calculated for constant energies
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Fig. 9. β-dependence of the ET rate constants for charge recombination,k1 (black circles with error bars), and charge shift,k2 (black squares
with error bars), in the ionic D+–A1−–A2 system as well as for the charge separation reactionsk0: D–A1–A2 → D+–A1−–A2 and k3:
D–A1–A2 → D+–A1–A2− in the neutral triad obtained for the molecular model of the solvent. Calculations were performed for acetonitrile solutions
at 291 K with�G1 = �G2 = �G0 = −0.8 eV and�G3 = −1.6 eV. The curvesk0(β) and k3(β) are taken from[32].

�G1 = �G2 = −0.8 eV are presented inFig. 9. The sym-
bols with error bars in the figure show the rate constantsk1
andk2 for the triad configurations, for which we performed
the MD simulations. The full lines are obtained by utiliz-
ing in Eqs. (15)–(19)the second-order polynomial fittings
to the MD values ofmi(β), λi(β) andλ12(β) performed for
the wholeβ-interval. The errors in rate constants are evalu-
ated from the errors of the respective MD values of means,
reorganization energies, and also (in the case ofk2) the co-
variancesσ2

12(β) = 2kBTλ12(β). The errors ofσ2
12(β) were

calculated from the time cross-correlation functions[59] and
their values for the considered triad arrangements are be-
tween 4× 10−4 and 6× 10−4 eV2.

In the figure we show also the rate constantk0(β) of the
charge separation reaction D–A1–A2→ D+–A1−–A2 cal-
culated for the free energy change�G0 = −0.8 eV [32].
As can be seen the functionsk1(β), k2(β) and k0(β) dif-
fer appreciably from each other. To complete the compar-
ison we plot additionally the rate constantsk3(β) of the
charge separation reaction: D–A1–A2→ D+–A1–A2− ob-
tained from MD results for�G3 = −1.6 eV [32]. With our
choice of�Gi the MD value ofk3 for the linear system
is rather small, whereas the successive steps: D–A1–A2→
D+–A1−–A2 → D+–A1–A2− occur with rates 86.8 and
39.4�s−1, respectively. On the other hand, the back ET that
reforms the neutral system D–A1–A2 is about 18 times faster
than the forward reaction.

Relation between the calculated rate constantsk1 andk2
inverts if we assume more negative values of the free energy
change. It is illustrated inFig. 10, which presents the energy
gap law for these two processes in the case of the linear

arrangement of the triad subunits. In the inverted region of
both reactions, i.e., for�G beneath−2.4 eV, the charge shift
occurs up to one order of magnitude faster than the charge
recombination.

To characterize the relation between the rates of the com-
petitive ETs in the ionic supramolecule D+–A1−–A2 we
define theβ-dependent quantityK2

K2(β) = k2(β)

k1(β) + k2(β)
(21)

which we call the yield of the forward ET. For the purpose
of the following comparison we assume equal values of the
transfer integralsJ1 = J2 in Eq. (21). The yieldK2 is pre-
sented inFig. 11 as a function ofq#

2 for different arrange-
ments of the triad subunits. All curves are plotted for the
constant difference|q#

1(β)− qmin
1 (β)| equal to 0.8 eV, where

qmin
1 (β) ≡ m1(β) denotes the value ofq1(β) at the mini-

mum of the free energy surfaceF(q1, q2) constructed for the
ionic system D+–A1−–A2 with a given geometry (seeFig.
8). The functionK2(q#

2) has a flat maximum, which shifts
by about 1.3 eV towards lower values of energy whenβ in-
creases from 60◦ to 180◦. The maximum values of the yield
K2 exceed 0.9 for all triad arrangements considered.

The shape and height of the functionK2(q#
2) depend, how-

ever, on the assumed value ofq#
1. Fig. 12 shows the func-

tions obtained from MD calculations for the regular trian-
gle and linear D+–A1−–A2 triads and for various values of
|q#

1(β) − qmin
1 (β)| = δ1. As can be expected, the smallest

K2 are obtained in both cases forδ1 = 0, i.e., when the rate
constantk1 achieves its maximum value.
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Fig. 10. Energy gap law for the backward ET (k1) and the forward ET (k2). The linear triad system D+–A1−–A2 in acetonitrile solvent at 291 K.

In the design of molecular devices for storing solar en-
ergy it is important to reach a relatively high value ofK2 and
to accumulate a large amount of energy�Estor = �G2 −
�G1 in a final charge-separated state. Hence, it can be in-
teresting to analyze results of the present model from the
energy-storage point of view for the D+–A1–A2− triad as
a final state.Fig. 13shows the contour map of the product
K2�Estor as a function of the free energy changes�G1 and
�G2 of the backward and forward ETs in the D+–A1−–A2
supramolecule with geometry described by the angleβ =
180◦. As can be seen, the productK2�Estor increases with
the decrease of both�G1 and�G2 and is close to 1 for

Fig. 11. Yield of the forward ET,K2, as a function ofq#
2 for different arrangements (β = 60, 90, 120, and 180◦) of the D+–A1−–A2. qmin

1 is the value
of q1 at the minimum of the respective free energy surfaceF(q1, q2). FunctionsK2(q#

2) are calculated for a constant difference of 0.8 eV betweenq#
1(β)

and qmin
1 (β). Acetonitrile solutions, 291 K.

�G1 lower than−3 eV. Such low values of�G1 correspond
to the inverted Marcus region of the charge recombination
reaction (cf.Fig. 10) with δ1 = q#

1 − qmin
1 larger than 0.8 eV

(seeFig. 12). Let us take a fixed value of�G1, say−3 eV. In
this case the rate constant of the backward ET is also fixed
at k1 = 0.12 ps−1 and the yieldK2 is maximized when the
rate constantk2 of the forward reaction is maximized. The
largest value ofk2 is obtained when−�G2 becomes equal
to the reorganization energyλ2, i.e., equal to 2.39 eV in the
case of the linear triad system. For more negative values of
�G2 the value ofK2 and that of�G2−�G1 both decrease,
so the productK2�Estor also decreases. On the other hand,
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Fig. 12. Yield K2 of the forward ET as a function ofq#
2 for the D+–A1−–A2 triad with the linear (β = 180◦) and the regular triangle (β = 60◦)

geometry.q#
1(β) is shifted fromqmin

1 (β) by δ1 = 0, 0.5, and 1 eV, respectively.

if we increase�G2 the value ofK2 decreases, but the value
of �G2 −�G1 increases and, consequently,K2�Estor may
increase in some case. It follows from this argument that
the value of�Gmax

2 , which maximizesK2�Estor should be
slightly larger than−λ2. In the considered case we have
�Gmax

2 = −1.88 eV and the optimized values of the rate
constantk2, the yieldK2, the energy�Estor, and the product
K2�Estor are 0.5 ps−1, 0.81, 1.12 and 0.91 eV, respectively.
Similar relation between�Gmax

2 andλ2 is held also for triads
with other arrangements of the subunits and the optimized
values ofK2, �Estor, and the productK2�Estor as functions

Fig. 13. Contour map of the quantityK2�Gstor, where�Gstor = �G2 − �G1, as a function of the free energy changes�G1 and�G2 of the forward
and backward ETs for the linear D+–A1−–A2 supramolecule.

of the angleβ characterizing the geometry of the triad, are
plotted inFig. 14. The smallest value ofK2�Estor, which
has been obtained forβ = 120◦, is lower by less than 18% in
relation to its largest value predicted for the regular triangle
triad. The optimized yieldK2 does not depend practically on
the triad geometry and the forward reaction for all consid-
ered systems is 3–4 times faster than the backward process.

The value of−�G2 obtained from our optimization is
larger than that estimated for the natural RC and for the ma-
jority of artificial molecular devices of the form D–A1–A2
synthesized in order to capture solar energy. However, there
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Fig. 14. Dependence of the yieldK2 of the forward ET, the energy�Gstor = �G2 − �G1 accumulated in the D+–A1–A2− state, and the product of
these two quantitiesK2�Gstor on the geometry of the D+–A1−–A2 triad. The free energy change of the charge recombination reaction is assumed to
have a constant value�G1 = −3 eV.

are systems for which at least the free energy change�G1
of the charge recombination reaction in D+–A1−–A2 is not
very different from our optimized value and the reaction
itself occurs in the inverted Marcus region. For instance,
Lawson et al.[25] considered the series of compounds, in
which three chromophores: DMA (N,N-dimethylaniline),
DMN (dimetoxynaphthalene), and DCV (dicyanovinyl), are
connected via bridges comprising several linearly fused nor-
bornyl and bicyclo[2.2.0]hexyl units[25]. The Gibbs free
energies−�G1 and−�G2 estimated for this triad in ace-
tonitrile are of the order of 3.5 and∼1 eV, respectively. In
benzene solution the value of�G2−�G1 is even higher and
equals 3.4 eV. Thus, the efficiency of energy storage in their
system is better than in our optimization. Another example
is a UV-absorbing molecular triad based on aromatic imide
chromophores, for which−�G1 and−�G2 in toluene so-
lution are equal to about 2.7 and 0.9 eV, respectively[26].
The authors estimated also the rate constant of the forward
ET for their triad as 2.3 ns−1. Imahori et al.[27] synthe-
sized a porphyrin–pyromellitimide–C60 triad with energy
levels of the D∗–A1–A2, D+–A1−–A2, and D+–A1–A2−
states equal to 2.06, 1.92 and 1.84 eV, respectively, and
nearly equal rate constants for the forward and backward
ETs (16 and 17 ns−1) in dioxane solution. Similarly, for
the triad ANI–NI–PI studied by Lukas at al.[67], where
ANI is a 4-(N-piperidinyl)-1,8-naphthaleneimide electron
donor, and NI and PI are 1,8:4,5-naphthalenediimide and
pyromellitimide acceptors, respectively, the ANI+–PI–NI−
state in toluene solution lies approximately 0.08 eV below
that of ANI+–PI−–NI. Additionally, the rate constant of the
forward ET in ANI+–PI−–NI is more than two orders of
magnitude larger than that for the backward reaction. Thus,
according to our optimization criterion, this triad would be

an example of very efficient system for storing solar energy.
In the triad designed by Osuka et al.[24] and composed of
fixed-distance porphyrin–oxochlorin–pyromellitdimide, the
D∗–A1–A2, D+–A1−–A2, and D+–A1–A2− states in DMF
have energies 1.91, 1.75 and 1.46 eV, respectively. They
found that the polar solvent although enables the sequen-
tial ETs: D∗–A1–A2 → D+–A1−–A2 → D+–A1–A2−, it
enhances rate of the energy wasteful charge recombination
process in D+–A1−–A2, decreasing the quantum yield of
the final, long-lived D+–A1–A2− state.

The aforementioned examples show that the value of
K2�Estor in solvents of high polarity is lower than that
in nonpolar solvents. Especially, the energy�Estor =
�G2 − �G1 considerably decreases with the increase
of polarity of the environment. To maximize the product
K2�Estor the free energy change of the forward reaction
�G2 should have a small negative value. As we pointed in
the previous paragraph the solvent reorganization energyλ2
connected with this reaction should be smaller than−�G2
and this condition can be fulfilled rather by solvents of low
polarity.

3.4. Solvent structure around the triad system

The time correlation functions inFigs. 4–7show clearly
differences in dynamics of the random variableseVi and
e(Vi − Vj) constructed for the electrostatic potentials on
different subunits of the D+–A1−–A2 system with vari-
ous geometry described by the angleβ. These differences
can be connected with the average arrangement of solvent
molecules around the triad, which is characterized for a
given β by a set of solute–solvent radial distribution func-
tions (RDFs). Using molecular configurations generated in
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Fig. 15. RDFs describing the radial distributions of the particular sites of
the acetonitrile molecules from D+ (upper part), A1− (middle part), and
A2 (lower part) subunits of the triad withβ = 120◦. C1 and C2 stand for
carbon sites of the methyl and cyanide groups, respectively.

equilibrium simulation runs, we calculated four sets of the
RDFs for distances between each subunit of the triad and
each site (atom) of the acetonitrile molecules.

Fig. 15shows these RDFs obtained for the triad with an-
gle β = 120◦. The functions in the figure can be directly
compared with the atom-site RDFs of[32] for the neutral
triad D–A1–A2. As expected, the presence of charge on D+
and A1− results in a very strong correlation of acetonitrile
molecule positions in the vicinity of the triad. The strongest
correlation occurs for the N sites around D+ ion. The first
peak height of the D+–N RDF equals 6.21 as compared to
1.12 for that of the D–N function in[32]. The former peak
is also considerably higher than the first maximum of the
D+–C2 g(r) that is shifted from the former peak by 0.85 Å
towards largerr. The integrated coordination numbers up
to the first minimum of these two RDFs arenN = 7.8 and
nC2 = 8.0, respectively. Since the C2 site is close to the cen-
ter of mass of CH3CN, we can say that the latter minimum
at r = 5.3 Å defines the first solvation layer of D+. Thus,
eight acetonitrile molecules forming this layer have their ni-
trogens directed toward the cation. From the positions of
the main peaks of the N and C2 RDFs we can infer that the

average orientation of these solvent molecules is character-
ized by the angle∠(D+–N–C2) ≈ 130◦. The spatial extent
of the first solvation shell of D+ is shorter by 1.35 Å than
that of the D atom in the neutral triad.

The closest to the A1− moiety of the triad are hydrogens
of acetonitrile molecules. We obtained identical RDFs for
each proton of the CH3 group. The A1−–H g(r) has two
distinct maxima, one at 3.05 Å and the other at 4.55 Å. It
indicates that rotation of the methyl group is considerably
limited in the vicinity of the anion. The minimum between
the two hydrogen peaks is at 3.95 Å and it corresponds to
the position of the first maximum in the A1−–C1 RDF.
This maximum together with the first peak of the A1−–C2
RDF shows that acetonitrile molecules in the vicinity of
the anion prefer orientations for which the average angle
∠(A1−–C1–C2) = 109.7◦. The integration of the A1−–C1
g(r) up to 3.95 Å givesnC1 = 3.33 and the first maximum of
the hydrogen RDFs corresponds to 2.78 atoms. These data
and a detailed analysis of the H, C1 and C2 RDFs suggest
that one of the methyl protons can be directed towards the
A1− with the average angle∠(A1−–C1–H) ≈ 30◦. The dis-
tribution of positions of the other two protons is described
by the second maximum of the A1−–H functions. The first
minimum of the anion-C1 RDF is at 5.75 Å and the inte-
grated coordination number up to this point isnC1 = 9.18.
The first coordination shell of A1− as composed of nine
acetonitrile molecules was confirmed also by integration of
C2 and H RDFs. The spatial extend of this shell is equal
to 5.95 Å.

The A2-site RDFs are similar to the distribution functions
presented in[32] for the side atoms of the neutral triad.
Correlation of the methyl group positions around A2 is,
however, slightly stronger for the D+–A1−–A2 system. For
example, the ratio of the peak heights of the C1 RDFs for the
two triads is equal to 1.36. The minimum of the A2–C2 RDF
is at 6.75 Å and we can expect 12 or 13 solvent molecules
in the first solvation layer of the atom A2.

The concentration of C2 sites in the first solvation shell
of the cation equalscs(D+) = 0.017 Å−3 and we can as-
sume that this value corresponds to the concentration of sol-
vent molecules around D+. Note thatcs(D+) is substantially
higher as compared to the corresponding values for both
the bulk acetonitrile (0.012 Å−3) and the vicinity of the D
atom in the neutral triad (0.010 Å−3). The average concen-
tration of the C2 sites in the neighborhood of the ion A1− is
cs(A1−) = 0.013 Å−3. However, the concentration of pro-
tons in the close vicinity of the anion is much higher and
equals 0.056 Å−3. These data clearly show that the relax-
ation process around A1− should be affected by very strong
steric effects, which slow down the rotation of acetonitrile
molecules in this region. Thus, it is not surprising that the
average relaxation time〈τ〉, estimated by integration of the
time correlation function (6), is longer for A1− than for
D+. The shortest〈τ〉 obtained for A2 is consistent with the
smallest solvent concentrationcs(A2) = 0.011 Å−3, which
was estimated from the first peak of the A2–C2 RDF.
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The RDFs for other spatial arrangements of the triad are
similar to the functions presented inFig. 15. It is interesting
to note, however, that all the RDFs for the linear triad start
at distancesrst, which are much shorter as compared torst
for other triad shapes. The integrated coordination numbers
for these small distances are very low. The most pronounced
variations withβ are observed among the RDFs for A2 moi-
ety. For instance, the intensity of the first peak of the A2–C1
RDF is considerably lower for a regular triangle than for
other arrangements of the triad. The integrated coordination
numbernC1 to the first minimum of the C1 function is 9.1
for β = 60◦ and rises to 10.4 in the case of the linear sys-
tem. Correlation of proton positions around A2 is also the
weakest forβ = 60◦. The solvation shell of A2 in the regu-
lar triangle system has a radius of 6.55 Å and it contains 11
acetonitrile molecules. This shell expands to 6.80 Å and 13
acetonitriles asβ reaches 180◦.

Differences in the average solvent structure around triads
can be expressed globally by the radial charge distributions
shown inFig. 16. We calculated the total chargeT(r) in-
side the sphere of radiusr around each subunit of a triad
by evaluating the integrated coordination numbersnk(r) at
the distancer for all sites of the acetonitrile molecules and

Fig. 16. Total charge of the sites of the acetonitrile molecules, which
are enclosed within a sphere of radiusr around the D+ (full line), A1−
(dashed line), and A2 (dotted line) subunits of the triads withβ = 60◦,
90◦, 120◦ and 180◦, respectively, as a function ofr.

summingnk(r) multiplied by the respective partial charges
Qk. In the figure we plottedT(r) as a function of the dis-
tancer from the subunit D+, A1− and A2, respectively, for
the triads of various geometry. As can be seen, the charge
distributions around the ionic subunit D+ as well as those
around the A1− are quite similar for allβ considered. The
first peak ofT(r) for the neutral moiety A2 is also indepen-
dent on the triad shape. However, contribution from par-
tial charges on more distant acetonitrile molecules causes
difference between distribution functions around A2 for
various triads.

4. Concluding remarks

We have considered competition between the nonadia-
batic charge separation D+–A1−–A2 → D+–A1–A2− and
the charge recombination D+–A1−–A2 → D–A1–A2 in a
model triad system D+–A1−–A2 immersed in acetonitrile
solvent at room temperature. To treat these ETs, we have
employed two reaction coordinatesq1 = e(V2 − V1) and
q2 = e(V2−V3), and constructed the 2D free energy surface
F(q1, q2) for the triads of various geometry in acetonitrile
solutions by MD computer simulations. Each of the two re-
actions occurs at the intersection of the free energy surfaces
of the reactant and the respective product, and this inter-
section is a straight line parallel to one of the coordinate
axes,q1 or q2. Positions of these lines can be changed by
changing electronic properties of the triad moieties. In the
nonadiabatic limit the ET rate constant is expressed in terms
of the equilibrium distribution in the free energy surface.

The stochastic properties of the reaction coordinates as
well as the triad geometry dependence of the ET rate con-
stants obtained in our calculations differ considerably from
predictions of the models, in which the solvent is treated as
a dielectric continuum. Dynamical properties of the reac-
tion coordinates for the ionic and neutral systems are closely
correlated with the dynamics of the solvent surrounding the
triads. The latter sometimes deviates significantly from our
expectations based on the results for solvation of single neu-
tral or ionic molecules.

Our calculations show the role of molecularity of the po-
lar solvent in description of the competitive ET reactions be-
tween subunits of the triad system modeled in the simplest
possible way. We hope that the present results can be a good
basis for introducing further refinements and constructing
more realistic theoretical models of the photoinduced ETs
in supramolecular systems.

The reorganization energies estimated in our calculations
for the ionic triads are comparable with the values ofλ for
the corresponding neutral triads. They are higher, however,
thanλ predicted on the basis of the continuum model of the
solvent for majority of synthesized supramolecular systems.
To verify and improve our estimation ofλ it would be nec-
essary to take into consideration the internal structure of a
supramolecule that is usually composed of many atoms and
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characterized by spatial distribution of partial charges[65].
The triad system constructed in our approach does not ex-
emplify an efficient molecular device for capturing and stor-
ing solar energy. The amount of energy stored in the final
charge-separated state is too low, and a reasonably high yield
of the forward ET is obtained only under the assumption that
both reactions are noticeably exoergonic. Our model, how-
ever, adopts a very approximate expression for the transfer
integral and does not discriminate between the strengths of
coupling of the reactant state with that of each of the prod-
ucts. Optimizing the values of the pre-exponential factors in
the rate constant formulas for both reactions we can improve
the relation between the backward and forward ET rates.
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